58 research outputs found

    Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks

    Get PDF
    Rainfall–runoff modelling is one of the key challenges in the field of hydrology. Various approaches exist, ranging from physically based over conceptual to fully data-driven models. In this paper, we propose a novel data-driven approach, using the Long Short-Term Memory (LSTM) network, a special type of recurrent neural network. The advantage of the LSTM is its ability to learn long-term dependencies between the provided input and output of the network, which are essential for modelling storage effects in e.g. catchments with snow influence. We use 241 catchments of the freely available CAMELS data set to test our approach and also compare the results to the well-known Sacramento Soil Moisture Accounting Model (SAC-SMA) coupled with the Snow-17 snow routine. We also show the potential of the LSTM as a regional hydrological model in which one model predicts the discharge for a variety of catchments. In our last experiment, we show the possibility to transfer process understanding, learned at regional scale, to individual catchments and thereby increasing model performance when compared to a LSTM trained only on the data of single catchments. Using this approach, we were able to achieve better model performance as the SAC-SMA&thinsp;+&thinsp;Snow-17, which underlines the potential of the LSTM for hydrological modelling applications.</p

    Supersymmetric sound in fluids

    Full text link
    We consider the hydrodynamics of supersymmetric fluids. Supersymmetry is broken spontaneously and the low energy spectrum includes a fermionic massless mode, the phonino\mathit{phonino}. We use two complementary approaches to describe the system: First, we construct a generating functional from which we derive the equations of motion of the fluid and of the phonino propagating through the fluid. We write the form of the leading corrections in the derivative expansion, and show that the so called diffusion terms in the supercurrent are in fact not dissipative. Second, we use an effective field theory approach which utilizes a non-linear realization of supersymmetry to analyze the interactions between phoninos and phonons, and demonstrate the conservation of entropy in ideal fluids. We comment on possible phenomenological consequences for gravitino physics in the early universe.Comment: Modified introduction and discussion of diffusion terms in the supercurren

    Supersymmetric Field-Theoretic Models on a Supermanifold

    Get PDF
    We propose the extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a supermanifold. We only deal with the limited class of supermanifolds which admit the existence of a smooth body manifold structure. Our considerations are based on the Catenacci-Reina-Teofillatto-Bryant approach to supermanifolds. In particular, we show that the class of supermanifolds constructed by Bonora-Pasti-Tonin satisfies the criterions which guarantee that a supermanifold admits a Hausdorff body manifold. This construction is the closest to the physicist's intuitive view of superspace as a manifold with some anticommuting coordinates, where the odd sector is topologically trivial. The paper also contains a new construction of superdistributions and useful results on the wavefront set of such objects. Moreover, a generalization of the spectral condition is formulated using the notion of the wavefront set of superdistributions, which is equivalent to the requirement that all of the component fields satisfy, on the body manifold, a microlocal spectral condition proposed by Brunetti-Fredenhagen-K\"ohler.Comment: Final version to appear in J.Math.Phy

    Quantization of Dirac fields in static spacetime

    Get PDF
    On a static spacetime, the solutions of the Dirac equation are generated by a time-independent Hamiltonian. We study this Hamiltonian and characterize the split into positive and negative energy. We use it to find explicit expressions for advanced and retarded fundamental solutions and for the propagator. Finally, we use a fermion Fock space based on the positive/negative energy split to define a Dirac quantum field operator whose commutator is the propagator.Comment: LaTex2e, 17 page

    Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems

    Full text link
    We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in this work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a stationary real analytic spacetime fulfills the analytic microlocal spectrum condition.Comment: 31 pages, latex2

    NeuralHydrology -- Interpreting LSTMs in Hydrology

    Full text link
    Despite the huge success of Long Short-Term Memory networks, their applications in environmental sciences are scarce. We argue that one reason is the difficulty to interpret the internals of trained networks. In this study, we look at the application of LSTMs for rainfall-runoff forecasting, one of the central tasks in the field of hydrology, in which the river discharge has to be predicted from meteorological observations. LSTMs are particularly well-suited for this problem since memory cells can represent dynamic reservoirs and storages, which are essential components in state-space modelling approaches of the hydrological system. On basis of two different catchments, one with snow influence and one without, we demonstrate how the trained model can be analyzed and interpreted. In the process, we show that the network internally learns to represent patterns that are consistent with our qualitative understanding of the hydrological system.Comment: Pre-print of published book chapter. See journal reference and DOI for more inf

    Quantum field theory in static external potentials and Hadamard states

    Get PDF
    We prove that the ground state for the Dirac equation on Minkowski space in static, smooth external potentials satisfies the Hadamard condition. We show that it follows from a condition on the support of the Fourier transform of the corresponding positive frequency solution. Using a Krein space formalism, we establish an analogous result in the Klein-Gordon case for a wide class of smooth potentials. Finally, we investigate overcritical potentials, i.e. which admit no ground states. It turns out, that numerous Hadamard states can be constructed by mimicking the construction of ground states, but this leads to a naturally distinguished one only under more restrictive assumptions on the potentials.Comment: 30 pages; v2 revised, accepted for publication in Annales Henri Poincar
    • …
    corecore